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Supplementary Text

Supplementary Text 1: Very low emissions scenario selection for CMIP6 ScenarioMIP

In the framework of the Scenario Model Intercomparison Project! (ScenarioMIP) of the Sixth Phase of
the Coupled Modelling Intercomparison Project? (CMIP6) a total of eight scenarios will be run. Four
scenarios are included in Tier 1 of ScenarioMIP and four more in Tier 2. A very low emission scenario
with forcing significantly below 2.6 Wm2 is part of Tier 2. Based on the scenario results presented in
this paper, afirst selection of two candidates has been proposed initially: the marker implementations
of SSP1-1.9 and SSP2-1.9, each with their particular characteristics (see Suppl. Material “ScenarioMIP
Proposal”). Based on this information, the ScenarioMIP Scientific Steering Committee selected the
SSP1-1.9 scenario for inclusion as the very low emission scenario in ScenarioMIP.

Supplementary Text 2: Feasibility of scenarios in models

Under the scenario protocol for this study, modelling frameworks attempted to limit total
anthropogenic radiative forcing by 2100 to 1.9 Wm (within rounding precision), by globally adjusting
a COz-equivalent carbon price. In several cases models were not able to provide a scenario under this
stringent forcing constraint (see Supplementary Table 1). In such cases, the scenario is referred as an
“infeasible” scenario in the model. “Feasibility” or “infeasibility” of scenarios in models is determined
in different ways, depending on the modelling framework.

- AIM/CGE: A scenario is infeasible if no solution can be found by the solver.

- GCAM: A scenario is infeasible if no solution can be found by the solver.

- IMAGE: A mitigation scenario is classified as “infeasible” if the climate target could not be
reached in the FAIR-SiMCaP model. This IMAGE module uses baseline emissions, CO; cost
curves (marginal abatement cost curves (MAC), derived from the energy/industry module
TIMER) and non-CO; cost curves, coupled with MAGICC6 to calculate long-term emission
pathways. For each scenario, FAIR-SiMCaP uses 64 runs with different emission profile
settings. If none of the runs are able to reach the target, the scenario is considered

infeasible.

- MESSAGE-GLOBIOM: A scenario is infeasible if no solution can be found by the optimization
solver.

- REMIND-MAgPIE: A scenario is infeasible if no solution can be found by the optimization
solver.

- WITCH-GLOBIOM: A scenario is infeasible if no solution can be found by the solver.

For example, in the IMAGE model, the lowest reachable 2100 forcing level under SSP2 assumptions
was 2.15 Wm™. This was the deepest radiative forcing level achievable within the model when a
maximum carbon tax trajectory leading up to about 1000 USD/tCO, in 2100 is applied. The inability of
models to reach the stringent 1.9 Wm objective of this study’s protocol thus does not imply that
scenarios more stringent than 2.6 Wm2 are excluded altogether.

Also assumptions accompanying the SSPs critically influence the feasibility of scenarios in models.
Appendix A in ref. 3 provides a detailed overview of the qualitative assumptions in and their variation
across SSPs. These assumptions also affect how quickly and pervasively climate policy can be scaled up
(see Refs. 3,4). Key barriers and limitations preventing the scenario to meet the modelling protocol
specifications are reported in the table below.
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Assumed
Shared
Socioeconomic
Pathways (SSP)

Share of models
able to produce
scenario in line
with modelling
specifications

Key barriers and limitations preventing the scenario to meet the modelling protocol
specifications

SSP1

6/6

The SSP1 assumptions include sustainable consumption patterns, low population growth,
energy efficiency improving faster than historically, rapid deployment of renewable energy,
and global cooperation®®. The latter implies rapid technology diffusion and effective global
climate policy from 2020 onwards. As a result, all participating models were able to create
scenarios in line with an end-of-century forcing target of 1.9 Wm2,

SSP2

4/6

”

The SSP2 assumptions represent middle-of-the-road or “dynamics-as-usual” assumptions
(meaning that societal changes follow established median experience) two out of six
modelling frameworks were not able to create a scenario in line with an end-of-century
forcing target of 1.9 Wm=.

A combination of factors led to this outcome in these two modelling frameworks: the
fragmentation of climate policy until 2040, inertia in decarbonization of the energy system,
medium agricultural intensification and lower levels of natural land protection (compared to
SSP1). The latter factors represent barriers to near-term emissions reductions. At the same
time, the potential of carbon removal options for SSP2 in these models (BECCS and
reforestation) and non-CO: reduction measures is insufficient to bring the net radiative forcing
to 1.9 Wm2in 2100. Models that have difficulties to prematurely shut down existing fossil
capacities (like IMAGE) and models who are characterized as having a comparably low
response to a policy signal because of a relatively limited potential for structural change® (like
WITCH) show clear difficulties to reach 1.9 Wm from these intermediate assumptions.

SSP3

0/1 (0/4)*

SSP3 assumptions describe a world with high challenges to mitigation including high
population growth leading to high food and energy demand, regional rivalry hampering social
and technological development (for example, significantly lower non-CO2 emissions reductions
potentials compared to SSP1 or SSP2, or the unavailability in MESSAGE of certain advanced
technologies like hydrogen from various sources), lower efficiency in all sectors (and lower
than historical improvements in annual energy intensity), low levels of natural land protection
allowing for deforestation, a preference for non-renewable energy carriers (leading to high
emissions intensity in the reference scenarios, and more residual emissions in, for example,
the transport sector) and unsustainable consumption patterns. It is also assumed that climate
policies will be fragmented until 2050. The combination of these assumptions leads to no
modelling framework being able to create a scenario consistent with limiting radiative forcing
to 1.9 Wm2in 2100.

SSP4

1/3

SSP4 assumptions reflect a highly unequal world with disparities in economic and political
power leading to increasing inequalities within and across countries over the 215t century. It
also assumes that social cohesion degrades and conflict and unrest become increasingly
common.® Technology development is high in high-tech sectors, and the energy system
diversifies. Although SSP4 is designed to represent a world in which challenges to mitigation
are low, environmental policies focus on local issues around middle and high income areas.®
These assumptions lead to weak mitigation targets (e.g. 3.4 Wm) being achieved quite easily.
However, mitigation becomes disproportionally harder for more stringent mitigation targets.
For example, the SSP4 land-use assumptions results in limits to which tropical deforestation
can be controlled, which leads to large residual emissions from this sector. For at least one
modelling framework, these residual emissions from deforestation render the achievement of
a 1.9 Wm2 target unachievable under SSP4 assumptions. Furthermore, large-scale
technological solutions are relatively easy to implement given the SSP4 storyline. However,
many actors are left behind, and thus mitigation which requires granular solutions at the
demand-side are comparatively less successful, and stringent targets which require
fundamental demand-side transformations hence become difficult to achieve.

SSP5

2/4

The SSP5 world is a high-tech yet fossil-fuel-oriented world in which high energy-intensive
lifestyles are adopted.> The SSP5 storyline describes a world with a strong believe in
technological progress and development of human capital as the path to sustainable
development. It is thus a world where measures which are often referred to as ‘techno-fixes’
feature particularly prominently. The ability to successfully deploy negative emissions
technologies and the potential to replace technologies with significant amounts of residual
CO2 emissions appear a key determining factor in making it possible for models to
counterbalance the otherwise high energy and resource intensity assumed by the SSP5
narrative. Under these assumptions two out of four modelling frameworks were able to create
scenarios consistent with limiting radiative forcing to 1.9 Wm2in 2100.

* 1 modelling framework attempted to reach 1.9 W m in 2100 with SSP3 assumptions, which turned out not to be achievable. Three additional modelling
frameworks were already not able to reach 2.6 W m2 in 2100 with SSP3 assumptions.

Finally, note that scenario feasibility or infeasibility in models differs distinctly from feasibility in the
real world (see discussion in main text).
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Supplementary Text 3: Literature carbon emissions and budget comparison

Scenarios show a range of 35 to 40 GtCO, yr! in global total CO; emissions in 2010 (see Figure 1a). This
range falls within the 68% uncertainty range of estimated historical global CO, emissions in 2010,
estimated at 34 to 41 GtCO; yr! based on the uncertainties reported in ref. 7.

The IPCC AR5 reported that for limiting global average temperature rise below 1.5°C relative to
preindustrial levels in more than 50% or 66% of the assessed simulations®, cumulative CO, emissions
from 2011 onward have to be kept below 550 or 400 GtCO,, respectively. We report cumulative
emissions budgets for the 1.9 Wm™ scenarios in the range of -175 to 475 GtCO,, with an SSP2 median
of 275 GtCO,, over the 2016-2100 period. Over the 2011-2015 period, roughly 200 GtCO; has been
emitted (based on data from ref. 9). The reported IPCC AR5 1.5°C budgets thus translate into about
350 and 200 GtCO, from 2016 onward, for 50 and 66% of simulations keeping warming to below 1.5°C,
respectively. Supplementary Figure 7d, shows that 1.9 Wm scenarios reported here reach a 66
percentile warming of about 1.5°C in 2100 in our modelling framework. Although the probabilities
reported here and the percentages given in Table 2.2 of ref. 8 are not directly comparable, the budget
numbers are broadly consistent particularly taking into account the uncertainties and differences in
budget definitions and methods to compute them (see also ref. 10). The Working Group Il contribution
to the IPCC AR5 further mentions that scenarios with a greater than 66% probability of limiting
warming to below 1.5°C in 2100 that were at that moment available in the literature were
characterized by carbon budgets of 90 to 310 GtCO, from 2011 to 2100. Adjusted with recent emissions
this becomes -110 to 110 GtCO; from 2016 to 2100, a slightly smaller range than the range found in
this new study. An earlier review of 1.5°C-consistent scenarios*? reported a carbon budget range of
200-415 GtCO, for the 2011-2100 period, based on scenarios from two modelling frameworks
(REMIND and MESSAGE), and without precise RF target. Again adjusting for the roughly 200 GtCO,
emitted between 2011 and 2015, this range becomes 0 to 215 GtCO,. This falls well within the -175 to
475 GtCO, range identified in this study based on scenarios with six modelling frameworks that aim for
limiting end-of-century RF to 1.9 Wm.

Supplementary Table 2 reports carbon budgets for alternative time periods.

A recent study®® (henceforth M17) reported new estimates for cumulative carbon emissions for
temperature increments relative to the present decade (2010-2019), based on the distribution of
responses in CMIP5 models (for instance, 730 GtCO, for an additional 0.6°C of warming relative to the
2010-2019 average). The carbon budget estimates presented in the present paper are broadly
consistent with the carbon budget estimates reported in the Working Group IIl Contribution to the
Fifth Assessment Report of the IPCC, but lower than the M17 study. The latter is due to several
methodological differences between the present study and M17, and as a result the different
outcomes can be understood.

First, this study assumes about 1°C of total human-induced global mean temperature rise relative to
preindustrial levels for the 2010-2019 period, compared to 0.9°Cin M17. Recent studies have reported
a range of human-induced global warming estimates for the 2010s, depending on the observational
data product used* (e.g., NOAA/GISS, NOAA/MLOST, or Berkeley Earth, compared to products based
on HadCRUT), with the average around 1°C as used here®. Second, carbon budgets reported in this
study are defined from 2016 to 2100. Until 2100, the SSPx-1.9 scenarios show an additional median
warming of about 0.25 to 0.3°C relative to the 2010-2019 period (and slightly more than 0.4°C at the
66 percentile). This is smaller than the 0.6°C in additional warming assumed in M17. The differences
described in the two previous points explain a difference in the order of 200-500 GtCO, between SSPx-
1.9 budgets reported here and the budgets reported in M17. Third, because of small lags in the
temperature response to CO, emissions of up to about a decade!®'” and the reducing efficiency of
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atmospheric CO, removal with increasing net negative CO, emissions'® cumulative CO, emissions for
SSPx-1.9 scenarios until 2100 are slightly smaller compared to threshold exceedance budgets'’. This
difference in budget definitions explains about 150-200 GtCO, of the difference between SSPx-1.9
budgets reported here and the budgets reported in M17. Fourth, the present study uses a probabilistic
model setup compared to the frequentist estimates based on the distribution of CMIP5 models by
M17. The median temperature response to cumulative emissions of carbon (TCRE) of the present study
is consistent with the multi-model mean of the CMIP5 range for the multi-gas forcing of RCP8.5, but
the distribution of our probabilistic observationally constrained ensemble differs from the CMIP5
model distribution and spread. This leads to the 66™ percentile response of the probabilistic model
setup of this study to be roughly comparable to the median CMIP5 response, which results in a
correction of about 100 GtCO; between the SSPx-1.9 and M17 estimates, but in a direction opposite
to the corrections mentioned above.

Supplementary Text 4: Land-use evolution

The emissions of land use and land-use change and forestry in our 1.9 Wm scenarios show a large
spread over the six modelling frameworks assessed here (Suppl. Figure 5). The main variation is driven
by the results of the GCAM modelling framework. GCAM allocates land based on expected profitability.
It models land-use developments that are technically possible in a model where economic policies can
be applied perfectly. As a result, policy-induced profit changes can result in large shifts in land
allocation and associated land-use CO,. For example, afforestation policies, implemented in GCAM
through a subsidy to land owners for storing carbon, lead to significant carbon sequestration in the
terrestrial system. Increases in the demand for and thus price of bioenergy, however, can lead to
significant bioenergy cropland expansion and associated carbon emissions (see refs. 19,20 for more
detail). In the 1.9 Wm™ scenarios described in this study this results in decadal emission changes of the
order of 10 GtCO,, or about 2 times the estimated global land-use emissions in 2014 (ref. 9). Also when
temporarily excluding the GCAM modelling framework from the land-use CO, analysis, important
differences are found. All but one of the remaining modelling frameworks (REMIND-MAgPIE??) show
mostly steadily declining land-use CO, emissions over time (the IMAGE model also sees emissions
occasionally increase during a single decade). In all cases this leads to a net global land-use sink by the
second half of the century. In REMIND-MAgPIE land-use CO, emissions initially increase and barely
reach net zero emissions by the end of the century in SSP2 and SSP5. This difference in model
behaviour is due to the inclusion of displacement effects into pasture land caused by high bioenergy
production combined with forest protection only?2. Model uncertainty here dominates the overall
socioeconomic uncertainty spanned by the SSPs, although generally lower land-use CO, emissions are
achieved in SSP1 compared to SSP2.

Supplementary Text 5: Negative emissions in SSPx-1.9 scenarios

SSPx-1.9 scenarios deploy a limited portfolio of conceivable negative emissions technologies (NETs,
see refs 23-25). Negative emissions in SSPx-1.9 scenarios are predominantly achieved through the
combination of bioenergy with carbon capture and storage (BECCS), with further contributions of CO,
uptake by the land-use sector and re- and afforestation measures. Although several other NETs are
conceivable, like direct air capture and storage (DAC) or enhanced weathering of minerals (see refs 23-
25 for an overview), these are not included as mitigation options in these scenarios. The dominance of
BECCS options in these scenarios does hence not imply a BECCS requirement. Rather, these scenarios
appear to prefer a substantial amount of carbon dioxide removal, and BECCS is the main option
currently available in models to achieve that.

In at least half of the IAMs and the here presented SSP1-1.9 and SSP2-1.9 scenarios, the larger BECCS
share (>50%) is coming from liquid biofuel production and/or hydrogen production. For these
secondary energy carriers downstream energy demand for low-carbon fuels is a key driver while
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negative emissions are more of a by-product. For example, by 2050 at least 50% of BECCS is coming
from non-electric applications in 3 out of 6 models in SSP1, and by 2100 in 4 out of 6 models. If biofuels
are produced to displace fossil-based fuels in sectors that cannot be electrified with assumed progress
in technologies (e.g., long-distance air travel, some heavy duty vehicles, petrochemicals), utilizing CCS
comes only with a small cost increment and energy penalty, because the fuel production processes
produce very pure streams of CO, that can either be vented or captured, conditioned and stored. This
even holds true for first generation biofuel production where CO; is produced in fermentation
processes for example see ref. 26. The Global Energy Assessment?’ estimates additional capital costs
in the range of 2-3% for capture under these circumstances. Under GHG prices consistent with the
1.9 Wm target such additional costs are very competitive (Table 12.16 in ref. 27 shows cost estimates
for liquid biofuels, Figure 12.24 in the same reference shows breakeven GHG prices to make CCS
competitive which are in range of 20-30 S/tCO,-e). The situation for hydrogen production from
biomass feedstock is comparable to that for liquid fuels.

BECCS was first presented about 15 years ago?®. It was subsequently used in several studies?®3?; the
carbon capture and storage (CCS) component was addressed in a dedicated IPCC Special Report®? in
2005, and BECCS was also discussed by the IPCC Fourth Assessment Report3® (AR4) in 2007. At the
time, the AR4 indicated that “further research is necessary to characterize biomass’ long-term
mitigation potential, especially in terms of land area and water requirements, constraints, and
opportunity costs, infrastructure possibilities, cost estimates (collection, transportation, and
processing), conversion and end-use technologies, and ecosystem externalities” in relation to the
deployment of BECCS®3. However, it is only with the publication of the IPCC’s Fifth Assessment Report!!
(AR5) that the use of BECCS in scenarios caught wider attention?*3%3¢, This generated both assessments
about the water and land resource implications of BECCS and other NETs?3, and commentaries that
started a societal debate on what an acceptable or desirable scale of NETs (and BECCS in particular)
would be?*3*37 and how these could be achieved in practice®. In addition, other studies also pointed
towards limitations in the deployment of measures that are considered sub-components of BECCS:
bioenergy production®>% and CCS***2, These issues have not been resolved, and since the inception of
NETs studies have argued that negative emissions should not be considered as a silver bullet solution,
but as a potential contribution in a wider portfolio of mitigation options!%2328333437 which includes
energy efficiency measures and deployment of a diverse range of low-carbon technologies.

As illustrated in Supplementary Fig. 20, BECCS contributions vary strongly across the SSPx-1.9
scenarios, with scenarios covering a range of 1 to 16 GtCO; of annual CO; removal by BECCS in 2050.
The same figure also shows clear differences between the various SSP implementations. For example,
SSP5-1.9 scenarios, which focus on exploring technological solutions in a strongly developing and
energy-intensive world, cover the high end of this range, whereas the green-growth SSP1-1.9 scenarios
use markedly less. This variation is a desired outcome of the variations in environmental awareness,
the varying rates of social and technological developments and the shift in consumption patterns
covered by the narratives of the SSPs.

Dedicated assessments and studies®3®%, not all of which are independent of the integrated
assessment modelling literature, reported potential annual rates of carbon dioxide removal through
BECCS to fall in the range of 2 to 11 GtCO, yr!in 2050 and 15-70 GtCO, yr!in 2100. Also environmental
non-governmental organisations have supported this 2050 range, highlighting that a practical figure
would be in the lower end of this range according to their assessment**. This range covers most SSPx-
1.9 scenarios. Exceptions exist at both the higher and the lower end. For example, the two available
highly fossil-fuel and technology focussed SSP5 scenarios (developed specifically to allow exploration
of trade-offs which would occur in worlds with high energy demand and in which technologies are
assumed to provide most of the mitigation solution) use 11 and 16 GtCO, yr! of BECCS in 2050,
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respectively. At the lower end, two SSP1 (AIM/CGE and GCAM) and one SSP2 (MESSAGE-GLOBIOM)
use BECCS in the range of 1-2 GtCO; yr?, and therewith fall below the literature range for year-2050
BECCS deployment. Overall, most SSPx-1.9 scenarios deploy less than 6 GtCO; yr'* of BECCS by 2050.

This variation in BECCS deployment thus provides a clear illustration of how scenarios allow a
structured exploration of diverse future worlds. It is clear that not all of these worlds are equally
desirable, and the here presented scenario set illustrates how potentially undesirable futures could be
identified. Cost-optimal SSP1-1.9 scenarios apply significantly less BECCS than SSP5-1.9 scenarios
which have high energy demand and a focus on technological solutions and fossil fuels. While not
providing all the answers, our scenarios show that if BECCS use is to be minimized or avoided, a focus
on energy efficiency and low energy demand, combined with sustainable consumption patterns that
result in less emissions from and pressure on the agricultural sector would be avenues that can be
pursued to facilitate this.

Supplementary Text 6: Verifying key characteristics

An earlier study identified key characteristics of 1.5°C scenarios!?. This study drew upon the
information of two modelling frameworks: the REMIND and MESSAGE models. Because some of the
1.9 Wm scenarios presented in this paper have been generated by new modelling frameworks, we
here verify whether the key characteristics identified in the earlier study still hold, and can spell them
out further based on insights from the present multi-model, multi-SSP analysis.

Characteristic 1: CO, reductions beyond global net zero emissions

Confirmed: Total global CO, emissions reach net zero between 2045 and 2060 (rounded to the nearest
5 years). Net CO, emissions in 2100 in our 1.9 Wm2 scenarios are about -5 to -19 GtCO,/yr in SSP1, and
-10 to -35 GtCO,/yr in SSP2 (Supplementary Table 2) .

Characteristic 2: Additional GHG reductions mainly from CO,
Confirmed: As illustrated in Supplementary Figure 21, the incremental mitigation implied by moving
from a 2.6 to 1.9 Wm™ scenario is dominated by reductions of CO, emissions.

Characteristic 3: Rapid and profound near-term decarbonisation of energy supply

Confirmed: All 1.9 Wm2 scenarios strongly reduce CO, emissions from energy supply in the near term
(2030 to 2040), with several models achieving net negative emissions from energy supply activities by
2040.

Characteristic 4: Greater mitigation efforts on the demand side
Confirmed: Additional mitigation efforts in the industry, buildings, and transport sectors result in
significantly lower emissions over the coming decades and by mid-century (Suppl. Figure 25).

Characteristic 5: Energy efficiency improvements are a crucial enabling factor for 1.5°C

Confirmed: As highlighted in the main body of this manuscript, all 1.9 Wm scenarios in line with the
Paris Agreement long-term temperature goal limit final energy demand by 2050 to about 10-40%
above 2010 levels in SSP2 (rounded to the nearest 5%). Also in the other SSPs, important reductions in
final energy demand are projected relative to the baseline. Annual energy intensity improvements
between 2020 and 2050 range from -2.4 to -4.1% in SSP1 and from -1.7 to -3.2% in SSP2. For SSP3, a
world in which energy intensity improvements are the hardest to achieve, neither 1.9 Wm2 nor 2.6
Wm scenarios could be produced, although also strong limitation to the effectiveness of climate
policies play an important debilitating role in SSP3.

Characteristic 6: higher mitigation costs
Confirmed: Figures 4 and 5 and Supplementary Figures 20-22 show the increase of mitigation costs
when moving from a 2.6 to 1.9 Wm2 scenario, particularly in the near term.
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Characteristic 7: Comprehensive emission reductions are implemented in the coming decade.
Confirmed: All 1.9 Wm™ scenarios in our study start declining global emissions from 2020 onward.
Scenarios thus confirm peaking in 2020. Starting earlier would not be possible due to the modelling
protocol constraints specified in the Shared Climate Policy Assumptions® (SPAs). Whether later peaking
would preclude going to 1.9 Wm2 requires dedicated model experiments.
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Supplementary Figures
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Supplementary Figure 1| Overview of available scenario runs in the SSP-RCP matrix framework. Values in each
box represent the number of available scenario runs over the number of participating modelling frameworks.
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Supplementary Figure 2| Energy and industry related CO2 emissions and CO2 generation in 1.9 Wm2 scenarios.
a, Global CO2 emissions from energy and industrial sources. Shaded areas show the range per SSP, solid lines the
marker scenarios for each SSP, and dashed lines are used in case only one scenario was available for a particular
SSP and this scenarios was not the marker implementation of that SSP; ¢, as panel a, but with single models
highlighted; b, Global CO2 generation (or production) from energy and industrial sources, computed as global
total CO2 emissions from energy and industrial sources plus the global total amount of carbon capture and
storage (CCS). Shaded areas show the range per SSP, solid lines the marker scenarios for each SSP, and dashed
lines are used in case only one scenario was available for a particular SSP and this scenarios was not the marker
implementation of that SSP; d, as panel b, but with single models highlighted. Models show important variations
in their near-term emission evolution between 2020 and 2030, for example, the very deep emissions reductions
modelled by the WITCH model and the less pronounced emission reductions in GCAM. These variations are the
result of structural differences between models, requiring models that include a low variation of low-carbon
technologies to reduce a lot in the first time step in order to compensate for a relatively limited emission
reduction potential in the long term (see Methods and Supplementary Text 2). Beyond model structure, also SSP
assumptions on phase-in of climate policies and availability of technologies® impact near-term emissions. For
example, SSP5 implementations are consistently higher than other available SSP implementations in 2030 in each
respective modelling framework reflecting the gradual phase-in of globally coordinated climate policy between
2020 and 2040 and the large potential for CDR in the second half of the century.
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Supplementary Figure 11 | Final energy demand in 1.9 Wm™ scenarios. a, Shaded areas show the range per
SSP, solid lines the marker scenarios for each SSP, and dashed lines are used in case only one scenario was
available for a particular SSP and this scenarios was not the marker implementation of that SSP; b, as panel a,
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Supplementary Figure 14 | Evolution of primary energy contributions of fossil-fuel energy sources to the
primary energy mix in 1.9 Wm scenarios over time. Data is shown for coal (panel a) without (panel b) and
with CCS (panel c), natural gas (panel d) without (panel e) and with CCS (panel f), oil (panel g), and all fossil fuels
without (panel h) and with CCS (panel i). Markers are highlighted in the next figure. The maximum possible coal
substitution potential in the industrial sector in WITCH is about 8-12% of final energy demand (see the model
documentation on http://doc.witchmodel.org). Therefore, WITCH continues to use a constant level of coal
throughout the century, albeit with CCS.
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Supplementary Figure 17 | Variation of the bioenergy primary energy in 2050. For each modelling framework
and each SSP the absolute amount of bioenergy is illustrated when moving from a world in absence of climate
policy (Base) to increasingly more stringent climate targets (6.0, 4.5, 3.4, 2.6, and 1.9 Wm™ in 2100). Note that
these values include both the contributions of energy crops and of bioenergy, which have different sustainability
implications (Supplementary Table 5)
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cereals (panels e and f) is shown.
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Supplementary Figure 19 | Variation of change of land area dedicated to specific uses in 2100 relative to 2010.
For each modelling framework and each SSP the change in global cropland for energy crops (panel a), cereal
production (panel b) and pasture (panel c) is illustrated when moving from a world in absence of climate policy
(Baseline) to more stringent climate targets (3.4, 2.6, and 1.9 Wmin 2100). Both the influence of socioeconomic
uncertainty as captured by the SSPs per model (black lines with coloured symbols) and the influence of model
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lines in panel a is identical, but grouped differently.
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Supplementary Figure 20 | BECCS deployment in 1.9 Wm2 scenarios and in weaker mitigation scenarios. a,
Deployment of BECCS over time in 1.9 Wm scenarios. Shaded areas show the range per SSP, solid lines the
marker scenarios for each SSP, and dashed lines are used in case only one scenario was available for a particular
SSP and this scenarios was not the marker implementation of that SSP.; b, Variation of the BECCS share of total
cumulative CCS over the 215 century. For each modelling framework and each SSP the change in BECCS share is
illustrated when moving from a world in absence of climate policy (Baseline, BsL) to increasingly more stringent
climate targets (6.0, 4.5, 3.4, 2.6, and 1.9 Wm in 2100). In the Baseline scenario BECCS nor CCS is deployed as it
is modelled as a zero carbon price scenario with no incentives to reduce CO2 emissions.
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Supplementary Figure 21 | Differential mitigation between 2.6 Wm™ and 1.9 Wm scenarios. Cumulative
mitigation between 2.6 and 1.9 Wm scenarios over the 2020-2050 (panel a), 2050-2100 (panel b), and 2020-
2100 period (panel c). The bulk of the differential mitigation is taken up by further reductions of CO..

S| — Rogelj et al. — 1.9 Wm™ scenarios

27/45



equivalent 2040 . .
Ctlzarbon price o relative effort increase

{\c}'d dr? to achieve 1.9 Wm2in SSP1:
Q

& S

.g;; # P . ; \‘, »_\\ . . $
3

cost metrics
R ' : CO, reduction

'g‘_,\% VU - : metrics

23

%a

2%

MRS T Tl e

1egENC: g s
S
% -5'0', ) CO’I'Q‘&‘O tiles: incma_sed effort B}
%/Qr C02 reductions in ,196 percentiles: to achieve 1.9 Wm-
2050 from industry

o £ mininum
= median
=]
m -
= e

=]

Supplementary Figure 22 | Differential mitigation characteristics when moving from a 2.6 Wm2 to a 1.9 Wm2 scenario in
SSP1. Updated from ref. 12. Indicators are: long-term mitigation costs (2010-2100 aggregate GDP losses relative to baseline
discounted at 5%); short-term mitigation costs (2010-2040 aggregate discounted at 5%); 2040 global emission-weighted
equivalent carbon price level; electricity price in 2030; cumulative CDR between 2010 and 2100 including BECCS and CO;
uptake by land use and land-use change; decarbonization pace (average linear 2010-2050 rate of reductions in energy-related
CO, emissions); reductions in CO, emissions from electricity from baseline in 2050; reductions in CO; emissions from industry

from baseline in 2050; reductions in CO, emission from transport from baseline in 2050; and reductions in CO, emissions
from buildings from baseline in 2050.
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Supplementary Figure 23 | Differential mitigation characteristics when moving from a 2.6 Wm2 to a 1.9 Wm2 scenario in
SSP2. Updated from ref. 12. Indicators are: long-term mitigation costs (2010-2100 aggregate GDP losses relative to baseline
discounted at 5%); short-term mitigation costs (2010-2040 aggregate discounted at 5%); 2040 global emission-weighted
equivalent carbon price level; electricity price in 2030; cumulative CDR between 2010 and 2100 including BECCS and CO;
uptake by land use and land-use change; decarbonization pace (average linear 2010-2050 rate of reductions in energy-related
CO, emissions); reductions in CO, emissions from electricity from baseline in 2050; reductions in CO; emissions from industry

from baseline in 2050; reductions in CO, emission from transport from baseline in 2050; and reductions in CO, emissions
from buildings from baseline in 2050.
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Supplementary Figure 24 | Differential mitigation characteristics when moving from a 2.6 Wm2 to a 1.9 Wm2 scenario in
SSP5. Updated from ref. 12. Indicators are: long-term mitigation costs (2010-2100 aggregate GDP losses relative to baseline
discounted at 5%); short-term mitigation costs (2010-2040 aggregate discounted at 5%); 2040 global emission-weighted
equivalent carbon price level; electricity price in 2030; cumulative CDR between 2010 and 2100 including BECCS and CO;
uptake by land use and land-use change; decarbonization pace (average linear 2010-2050 rate of reductions in energy-related
CO, emissions); reductions in CO, emissions from electricity from baseline in 2050; reductions in CO; emissions from industry

from baseline in 2050; reductions in CO, emission from transport from baseline in 2050; and reductions in CO, emissions
from buildings from baseline in 2050.

|
&
3
g
3

Sl — Rogelj et al. — 1.9 Wm™ scenarios 30/45



el

= 5 —~ 2 : - . :

ESS 5§53

g E -

E ™~ 8 w o Q ot

cC o U

°S5H o0 SIPSIG!

v = £ (U]

n n

£Z8 €9 8o}

g @S 2

=T w.\.é ]

o=5 51 o' <

Oa g o2 gyl

v TR =

2 510 535,

g EEa

[ 8 A (W] —

-15 : . - . -8 : . : .
2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100
Time (years) Time (years)
c
@
g

£ % ?‘:v € =2

£ 9 22

S S& (113 % ® 0O ol

= U= c oy

v U own o~ G

c v e [T ey

©w® = LT ow

ao g E U 0-2r

- ] w g _

egg ! ~g 2

g E= OCco g

~E UL u4r

o] o E c =9

(W] = = 8_#

c T o 5 E

= co o c =56F

v g~ -2l S

2w T S So

= (] -

652 _ .
g o~ 2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100
ol Time (years) Time (years)

A: AIM/CGE M: MESSAGE-GLOBIOM SSP colours:
G: GCAM4 R: REMIND-MAgPIE SSP1-1.9  S5P4-1.9
I IMAGE W: WITCH-GLOBIOM SSP2-1.9  S5P5-1.9

Supplementary Figure 25 | Difference in sectorial CO, emissions between 2.6 Wm and 1.9 Wm2 scenarios.
Emissions for the energy supply (panel a), the industrial (panel b), the residential and commercial (panel c), and

the transport sector (panel d) are shown.
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Supplementary Figure 26 | Variation of consumption losses and mitigation investments in energy supply over climate
mitigation (in target radiative forcing) and SSP space. a, Consumption losses are computed as the discounted (5% discount
rate) global difference between consumption in 1.9 Wm2 scenarios compared to the no-climate-policy baseline over the
2020-2100 period; b, Mitigation energy supply investments are the difference between global energy supply investments in
1.9 Wm2 scenarios and the no-climate-policy baseline in 2050. Each box represents one model-SSP-RF target combination.
A: AIM/CGE, G: GCAMA4, |: IMAGE, M: MESSAGE-GLOBIOM, R: REMIND-MAGPIE, W: WITCH-GLOBIOM. Variation of Figure 5
in the main manuscript.
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Supplementary Tables

Supplementary Table 1 | Overview of participating modelling teams and successful scenarios. 1: successful
scenario consistent with modelling protocol; 0: unsuccessful scenario; x: not modelled; 0*: not attempted
because scenarios for a 2.6 Wm™ target were already found to be unachievable in an earlier study®. SSP3-SPA3
for a more stringent 1.9 Wm™ radiative forcing target have thus not been attempted anew by many modelling
teams. Marker implementations of each SSP1 are indicated in blue.

Model Model Model type Documentation i
Team . Reported scenarios
name label and citation
SSP1- SSP2-  SSP3-  SSP4-  SSP5-
SPA1 SPA2 SPA3 SPA4 SPA5
NIES AlM A General equilibrium (GE) ref. 48 1 1 0* 0 0
PNNL GCAM4 G Partial equilibrium (PE) ref. 49 1 1 X 0 1
PBL IMAGE I Hybrid (systems dynamic ref. 30 1 0 0* y y
model and GE for agriculture)
IIASA MESSAGE- M Hybrid (systems engineering ref. °1*
GLOBIOM partial equilibrium models 1 1 0* X X
linked to aggregated GE)
PIK REMIND- R G ilibri 52
eneral equilibrium (GE) ref. 1 1 « « 3
MAgPIE
FEEM WITCH- w General equilibrium (GE) ref. 53
GLOBIOM 1 g g 1 g
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Supplementary Table 2 | Annual emissions and CO: emissions budgets. Annual CO2 and GHG emissions, and
CO; emission budgets in the 1.9 Wm2 scenarios for various time periods. Annual emissions are rounded to the
nearest 1 GtCO: (or GtCO2-eq), emission budgets to the nearest 25 GtCO2, and net zero years to the nearest 5.
Minimum, maximum, median, and mean are only provided if sufficient scenarios are available in the respective
subset. Values mentioned in the main manuscript are highlighted in blue. Annual CO2 production from energy
and industry represents annual CO2 emissions from energy and industry increased by the annual amount of
carbon capture and storage (CCS).

Scenario

Indicator Minimum Maximum Median Average
subset

SSP1-1.9 Scenarios (# scenarios = 6)

Annual GHG emissions (GtCOze yr?)

2010 48 52 49 49
2020 45 51 50 49
2030 19 37 28 28
2040 12 25 17 18
2050 5 12 10 9
2100 -13 -2 -9 -8
Net zero timing (year) 2065 2075 2070 2070
Annual CO2 emissions from energy and industry (GtCO: yr?)

2010 31 33 32 32
2020 31 37 34 34
2030 11 32 22 21
2040 5 26 12 14
2050 1 18 5 6
2100 -15 -1 -11 -10
Net zero timing (year) 2050 2080 2060 2065
Annual total CO; emissions (GtCO: yr?)

2010 35 40 36 36
2020 33 38 37 36
2030 11 26 19 19
2040 6 16 9 11
2050 1 4 3 3
2100 -18 -4 -14 -12
Net zero timing (year) 2055 2060 2055 2055
Annual CO; production from energy and industry (GtCO; yr*)

2010 31 33 32 32
2020 31 37 34 34
2030 13 33 23 23
2040 12 29 16 18
2050 11 23 12 15
2100 -1 12 3 4
Net zero timing (year) N/A N/A N/A N/A
Cumulative COz emissions

CO: from energy & industry (2016-2050, GtCO) 525 1025 675 700
Total CO; (2016-2050, GtCO) 550 775 650 675
CO: from energy & industry (2016-2100, GtCO) 300 1000 425 525
Total CO; (2016-2100, GtCO,) 250 475 325 325

Continued on next page
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Scenario

Indicator Minimum Maximum Median Average
subset

S$SP2-1.9 Scenarios (# scenarios = 4)

Annual GHG emissions (GtCOze yr?)

2010 49 52 51 51
2020 53 57 56 55
2030 26 48 38 37
2040 13 21 19 18
2050 2 12 5 6
2100 -21 -5 -8 -10
Net zero timing (year) 2055 2070 2060 2060
Annual CO: emissions from energy and industry (GtCO; yr?)

2010 32 33 32 33
2020 36 39 38 38
2030 19 32 25 25
2040 4 13 11 10
2050 -9 6 4 1
2100 -30 -7 -11 -15
Net zero timing (year) 2045 2065 2060 2055
Annual total CO; emissions (GtCO; yr?)

2010 36 40 38 38
2020 41 43 42 42
2030 20 36 27 28
2040 8 12 9 9
2050 -7 4 -3 -3
2100 -32 -9 -14 -17
Net zero timing (year) 2045 2060 2050 2050
Annual CO; production from energy and industry (GtCO: yr?)

2010 32 33 32 33
2020 36 40 38 38
2030 21 35 26 27
2040 12 25 17 18
2050 4 22 16 15
2100 0 11 3 4
Net zero timing (year) N/A N/A N/A N/A
Cumulative COz emissions

CO; from energy & industry (2016-2050, GtCO2) 625 850 700 700
Total CO: (2016-2050, GtCO,) 700 800 750 750
CO; from energy & industry (2016-2100, GtCO2) 0 550 375 325
Total CO; (2016-2100, GtCO,) -100 400 250 200

Continued on next page

S| — Rogelj et al. — 1.9 Wm™ scenarios 35/45



Scenario

Indicator Minimum Maximum Median Average
subset

S$SP4-1.9 Scenarios (# scenarios = 1)

Annual GHG emissions (GtCOze yr?)

2010 - - - 48
2020 - - - 53
2030 - - - 21
2040 - - - 17
2050 - - - 11
2100 - - - -7
Net zero timing (year) - - - 2075
Annual CO: emissions from energy and industry (GtCO; yr?)

2010 - - - 32
2020 - - - 37
2030 - - - 13
2040 - - - 10
2050 - - - 5
2100 - - - -9
Net zero timing (year) - - - 2065
Annual total CO; emissions (GtCO; yr?)

2010 - - - 35
2020 - - - 39
2030 - - - 13
2040 - - - 9
2050 - - - 4
2100 - - - -11
Net zero timing (year) - - - 2060
Annual CO; production from energy and industry (GtCO: yr?)

2010 - - - 32
2020 - - - 37
2030 - - - 15
2040 - - - 14
2050 - - - 12
2100 - - - 14
Net zero timing (year) - - - N/A
Cumulative COz emissions

CO; from energy & industry (2016-2050, GtCO2) - - - 600
Total CO: (2016-2050, GtCO,) - - - 600
CO; from energy & industry (2016-2100, GtCO2) - - - 400
Total CO; (2016-2100, GtCO,) - - - 375

Continued on next page
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Scenario

Indicator Minimum Maximum Median Average
subset

SSP5-1.9 Scenarios (# scenarios = 2)

Annual GHG emissions (GtCOze yr?)

2010 49 50 - -
2020 55 55 - -
2030 46 49 - -
2040 15 32 - -
2050 1 11 - -
2100 -19 -14 - -
Net zero timing (year) 2060 2065 - -
Annual CO: emissions from energy and industry (GtCO; yr?)

2010 32 33 - -
2020 38 40 - -
2030 31 36 - -
2040 14 18 - -
2050 -4 10 - -
2100 -23 -20 - -
Net zero timing (year) 2050 2075 - -
Annual total CO; emissions (GtCO; yr?)

2010 36 36 - -
2020 40 42 - -
2030 36 38 - -
2040 5 22 - -
2050 -9 1 - -
2100 -26 -21 - -
Net zero timing (year) 2045 2050 - -
Annual CO; production from energy and industry (GtCO: yr?)

2010 32 33 - -
2020 38 41 - -
2030 37 39 - -
2040 25 37 - -
2050 13 39 - -
2100 2 3 - -
Net zero timing (year) N/A N/A - -
Cumulative COz emissions

CO; from energy & industry (2016-2050, GtCO2) 875 900 - -
Total CO: (2016-2050, GtCO,) 750 975 - -
CO; from energy & industry (2016-2100, GtCO2) 50 750 - -
Total CO; (2016-2100, GtCO,) 75 200 - -

Continued on next page
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Scenario

Indicator Minimum Maximum Median Average
subset

All 1.9 Wm Scenarios (# scenarios = 13)

Annual GHG emissions (GtCOze yr?)

2010 48 52 49 50
2020 45 57 53 52
2030 19 49 32 33
2040 12 32 18 19
2050 1 12 9 8
2100 -21 -2 -9 -10
Net zero timing (year) 2055 2075 2065 2065
Annual CO: emissions from energy and industry (GtCO; yr?)

2010 31 33 32 32
2020 31 40 37 36
2030 11 36 25 24
2040 4 26 13 12
2050 -9 18 5 4
2100 -30 -1 -12 -13
Net zero timing (year) 2045 2080 2060 2060
Annual total CO; emissions (GtCO; yr?)

2010 35 40 36 37
2020 33 43 39 39
2030 11 38 23 24
2040 5 22 9 11
2050 -9 4 2 0
2100 -32 -4 -14 -15
Net zero timing (year) 2045 2060 2055 2055
Annual CO; production from energy and industry (GtCO: yr?)

2010 31 33 32 32
2020 31 41 37 36
2030 13 39 25 26
2040 12 37 18 20
2050 4 39 13 16
2100 -1 14 3 5
Net zero timing (year) N/A N/A N/A N/A
Cumulative COz emissions

CO; from energy & industry (2016-2050, GtCO2) 525 1025 700 725
Total CO: (2016-2050, GtCO,) 550 975 750 725
CO; from energy & industry (2016-2100, GtCO2) 0 1000 400 425
Total CO; (2016-2100, GtCO) -100 475 325 275
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Supplementary Table 3 | Annual emissions reduction rates. Annual CO2 and GHG emissions reduction rates over
the 2020-2050 period in the 1.9 Wm™ scenarios, rounded to the nearest 0.1% yrl. Minimum, maximum, median,
and mean are only provided if sufficient scenarios are available in the respective subset. Two methods are used:
compound annual reduction rates (CAGR) and linear annual reduction rates (LIN). Imaginary rates: “N/A”.

Scenario subset  Indicator Minimum Maximum Median Average
S$SP1-1.9 Scenarios (# scenarios = 6)

Annual GHG emissions reduction rates

CAGR -7.2% -4.7% -5.2% -5.5%

LIN -3.0% -2.5% -2.7% -2.7%

Annual CO; emissions from energy and industry reduction rates

CAGR -10.2% -2.3% -6.5% -6.7%

LIN -3.2% -1.7% -2.9% -2.8%

Annual total COz emissions reduction rates

CAGR -11.1% -7.2% -7.9% -8.5%

LIN -3.2% -3.0% -3.1% -3.1%

Annual CO; production from energy and industry

CAGR -3.8% -1.5% -3.2% -2.9%

LIN -2.3% -1.2% -2.1% -1.9%
S$SP2-1.9 Scenarios (# scenarios = 4)

Annual GHG emissions reduction rates

CAGR -11.4% -5.0% -7.9% -8.0%

LIN -3.2% -2.6% -3.1% -3.0%

Annual CO; emissions from energy and industry reduction rates

CAGR N/A N/A N/A N/A

LIN -4.1% -2.8% -3.0% -3.2%

Annual total COz emissions reduction rates

CAGR N/A N/A N/A N/A

LIN -3.9% -3.0% -3.6% -3.5%

Annual CO; production from energy and industry

CAGR -7.1% -2.0% -2.7% -3.6%

LIN -3.0% -1.5% -1.9% -2.1%
S$SP4-1.9 Scenarios (# scenarios = 1)

Annual GHG emissions reduction rates

CAGR - - - -5.2%

LIN - - - -2.7%

Annual CO; emissions from energy and industry reduction rates

CAGR - - - -6.6%

LIN - - - -2.9%

Annual total COz emissions reduction rates - - -

CAGR - - - -7.2%

LIN - - - -3.0%

Annual CO: production from energy and industry - - -

CAGR - - - -3.6%

LIN - - - -2.2%
SSP5-1.9 Scenarios (# scenarios = 2)

Annual GHG emissions reduction rates

CAGR -11.7% -5.3% - -

LIN -3.3% -2.7% - -

Annual CO; emissions from energy and industry reduction rates

CAGR N/A N/A - -

LIN -3.7% -2.5% - -

Annual total CO; emissions reduction rates - -

CAGR N/A N/A - -

LIN -4.0% -3.2% - -

Annual CO; production from energy and industry - -

CAGR -3.6% -0.2% - -

LIN -2.2% -0.2% - -
All 1.9 Wm Scenarios (# scenarios = 13)

Annual GHG emissions reduction rates

CAGR -11.7% -4.7% -5.5% -6.7%

LIN -3.3% -2.5% -2.7% -2.8%

Annual CO; emissions from energy and industry reduction rates

CAGR N/A N/A N/A N/A

LIN -4.1% -1.7% -2.9% -3.0%

Annual total CO; emissions reduction rates

CAGR N/A N/A N/A N/A

LIN -4.0% -3.0% -3.2% -3.3%

Annual CO; production from energy and industry

CAGR -7.1% -0.2% -3.0% -3.0%

LIN -3.0% -0.2% -2.0% -1.9%
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Supplementary Table 4 | Overview inter-model and inter-SSP variations for wind, solar, and natural gas

primary energy contributions in 2050. Inter-model variations give the minimum (Min.), maximum (Max.), and
maximum difference (Var.) of a specific variable across nominally similar scenarios but generated by different
models. Inter-SSP variations give the minimum, maximum, and maximum difference of a specific variable across

all available SSPs for a given climate target (for example a 1.9 Wm2 target). The last column provides the number

of scenarios on which the other values are based. At times the variation is 0 as only one scenario is available.
Primary energy is calculated with the direct equivalence accounting method.

Primary Energy 2050 (EJ yr?)

Wind Solar Gas
Min. Max. Var. Min. Max. Var. Min. Max. Var. #
scens
Ref
Inter- SSP1 22 55 33 21 59 39 122 269 146 6
model SSP2 6 30 24 3 40 37 182 260 78 6
variations SSP3 1 21 19 1 18 17 203 235 32 5
SSP4 15 55 39 12 26 14 132 241 110 3
SSP5 1 29 28 0 13 13 232 379 147 4
Inter-SSP AIM/CGE 1 46 45 1 26 25 122 232 109 5
variations GCAM4 10 31 21 6 21 15 235 379 144 5
IMAGE 6 24 18 6 29 23 232 269 37 3
MESSAGE-GLOBIOM 16 30 13 18 59 42 226 253 27 3
REMIND-MAGPIE 9 22 13 0 23 23 198 379 181 3
WITCH-GLOBIOM 21 55 34 3 26 23 180 318 138 5
4.5 Wm??
Inter- SSP1 25 96 71 23 60 37 111 265 153 6
model SSP2 18 68 50 14 44 30 137 248 111 6
variations SSP3 11 56 45 6 31 25 152 231 79 4
SSP4 26 99 73 17 28 11 118 221 103 3
SSP5 10 83 73 4 27 23 182 352 169 4
Inter-SSP AIM/CGE 10 50 40 5 28 23 111 182 71 5
variations GCAM4 22 33 10 14 23 8 221 352 131 4
IMAGE 12 25 13 12 31 20 206 265 58 3
MESSAGE-GLOBIOM 32 41 9 31 60 29 231 247 16 3
REMIND-MAGPIE 20 26 6 4 34 30 180 346 166 3
WITCH-GLOBIOM 56 99 43 11 27 17 152 187 35 5
2.6 Wm?
Inter- SSP1 24 140 115 34 65 31 49 245 196 6
model SSP2 22 110 88 18 71 53 55 215 160 6
variations SSP3 - - - - - - - - - 0
SSP4 36 137 101 23 39 16 65 169 104 3
SSP5 29 44 15 17 29 11 132 292 160 3
Inter-SSP AIM/CGE 29 72 43 17 40 22 75 132 57 4
variations GCAMA4 36 48 12 21 34 14 169 292 124 4
IMAGE 22 24 2 18 47 29 116 193 76 2
MESSAGE-GLOBIOM 41 46 5 50 65 15 215 245 31 2
REMIND-MAGPIE 32 40 9 23 71 49 101 221 120 3
WITCH-GLOBIOM 110 140 29 33 39 6 49 65 16 3
1.9 Wm??
Inter- SSP1 31 107 77 48 91 43 15 199 184 6
model SSP2 42 89 47 24 128 104 16 169 153 4
variations SSP3 - - - - - - - - - 0
SSP4 105 105 0 58 58 0 22 22 0 1
SSP5 48 48 0 32 65 33 58 266 208 2
Inter-SSP AIM/CGE 89 107 19 54 62 8 48 79 31 2
variations GCAM4 42 68 26 24 51 27 169 266 97 3
IMAGE 31 31 0 48 48 0 147 147 0 1
MESSAGE-GLOBIOM 59 71 13 64 68 4 128 199 71 2
REMIND-MAGPIE 48 54 6 65 128 63 16 58 42 3
WITCH-GLOBIOM 105 105 1 58 68 9 15 22 7 2
S| — Rogelj et al. — 1.9 Wm™ scenarios 40/45



Supplementary Table 5 | Share of energy crops in total bioenergy contributions in 2050 in 1.9 Wm™, Data is

only provided for those models and those scenarios for which this is information was provided.

Model

SSP1

SSP2

SSP3

SSP4 SSP5

Share of energy crops to total bioenergy in 2050

AIM/CGE

GCAM4

IMAGE
MESSAGE-GLOBIOM
REMIND-MAgPIE
WITCH-GLOBIOM

38%

77%
0%

79%

85%
0%

Absolute contribution of energy crops in 2050 (EJ yr?)

AIM/CGE

GCAM4

IMAGE
MESSAGE-GLOBIOM
REMIND-MAgPIE
WITCH-GLOBIOM

48

157
0

205

263

Supplementary Table 6 | Change in global forest area in 2050 relative to 2010 levels. Data is only provided for
those models and those scenarios for which this is information was provided.

Model

SSP1

SSP2

SSP3

SSP4 SSP5

1.9 Wm2: Change in global forest area in 2050

relative to 2010 levels

AIM/CGE

GCAMA4

IMAGE
MESSAGE-GLOBIOM
REMIND-MAgPIE
WITCH-GLOBIOM

23%
23%
5%
9%
0%

18%
9%

8%
-2%

15%

0%

Baseline: Change in global forest area in 2050

relative to 2010 levels

AIM/CGE
GCAM4
IMAGE

MESSAGE-GLOBIOM
REMIND-MAgPIE
WITCH-GLOBIOM

-2%
3%

2%
0%
-2%

-5%
-1%

-7%
-2%
-3%

-7%
-5%

11%
-4%

-5% -4%
-2% 1%

-6% -9%

-5%
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Supplementary Table 7 | Definitions for indicators shown in Figure 6. For each SSP, the “baseline scenario”
refers to the scenario in which no targeted climate change mitigation action is assumed.

Indicator

Definition

Cumulative CO, mitigation from
baseline in 2020-2100 period in
1.9 Wm2 scenarios (GtCO,)

Cumulative net land-use CO; in
2020-2100 period in 1.9 Wm-2
scenarios (GtCO,)

Average CO; storage from BECCS in
1.9 Wm-2 scenarios over 2020-
2100 period (GtCO, yr1)

Upscaling of low-carbon primary
energy share in 1.9 Wm?2
scenarios in 2050 rel. to baseline

()

Reduction in coal primary energy in
1.9 Wm-2 scenarios in 2050 rel.
to baseline (EJ yr1)

Reduction in carbon intensity of
primary energy in 2050 in 1.9
Wm-2 scenarios rel. to baseline
(tCO, TJY)

Average final energy demand over
2020-2100 period in the
1.9 Wm2 scenario (EJ yr?)

Average annual energy system
investment over 2020-2100
period in 1.9 Wm-2 scenarios
(trillion 2005USD)

Emission intensity of food
production in 1.9 Wm-2 scenarios
in 2050 (gCO,-eq kcal?)

Non-CO; emissions from agriculture
in 1.9 Wm-2 scenarios in 2050
(GtCO,-eq yr1)

Difference between cumulative CO, emissions in the 2020-2100
period in the baseline scenario and in the 1.9 Wm2 scenario.

Cumulative net land-use CO; emissions and removals over the
2020-2100 period in 1.9 Wm2 scenarios.

Average annual amount of CO; stored by bioenergy in
combination with carbon capture and storage (BECCS) over the
2020-2100 period.

Factor by which the year-2050 low-carbon primary energy share
has to be scaled up from its levels in the baseline scenario to the
levels in 1.9 Wm2 scenarios. Low-carbon primary energy here
includes solar, wind, hydro, and geothermal power, as well as
nuclear, biomass, and abated fossil fuels (i.e. fossil fuels combined
with CCS). The direct equivalent method has been used for
primary energy accounting, see e.g. Ref 54.

The amount by which the contribution of coal to primary energy
supply is reduced between the baseline scenario and the 1.9 Wm
scenario in 2050.

Factor by which year-2050 carbon intensity of primary energy is
reduced in the 1.9 Wm2 scenario compared to the baseline
scenario. Carbon intensity is computed as global total CO,
emissions (reported in MtCO, yr) over globally aggregated
primary energy (reported in EJ yr) in 2050.

The average over the 2020-2100 period of global final energy
demand in the 1.9 Wm2 scenario.

The average annual amount of total investments in energy supply
over the 2020-2100 period in the 1.9 Wm2 scenario. Note that
these investments encompass all investments in energy supply,
not just specific climate mitigation investments.

Amount of CH4 and N,O emitted by agriculture per kcal of global
food energy supply in 1.9 Wm-2 scenarios in 2050.

Amount of CH4 and N,O emitted by agriculture in 1.9 Wm
scenarios in 2050, aggregated with GWP-100 from the IPCC AR4.
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